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I.  INTRODUCTION 

Blast associated with an accidental explosion is a danger to 
personnel, structures, and equipment. One simple protective measure 
is to build a massive total-containment structure. However, in many 
cases some type of vented structure is called for, such as: structures 
with frangible or blow-out panels, or the types of vented structures 
described in reference 1. 

In order to better understand the suppression of blast by vented 
structures, BRL is conducting suppression tests on scaled-down models 
of such structures*; and, in a 10.2cm diameter shock tube, tests are 
being conducted on panels of those structures--for which the vented 
area is not easy to determine—and on panels with holes drilled in 
them2—for which the vented area is well-known. 

In this report, which is done in conjunction with the Applied 
Technology Program of the Suppressive Shielding Program, we compare 
the shock tube experiments done by the BRL2 and others**-5,7 £or singie_ 

1. C.  Kingery,  R.  Schumacher,  and W.  Ewing,   "Internal Pressures from 
Explosions in Suppressive Structures," BRL IMR 403, Ballistic 
Research Laboratories, Aberdeen Proving Ground, MD., June 1975. 
(Not Available) 

2. Private communication from Mr.  C. Kingery, Ballistic Research 
Laboratories, Aberdeen Proving Ground, MD., November 1975. 

3. L.  Dresner and C.   V.  Chester,   "Attenuation of Shocks in Tubes by 
Orifice Plates," ORNL  - TM-1750,  Oak Ridge National Laboratory, 
Oak Ridge,  TN.,   1967. 

4. B. Anet,   "Experimentelle Untersuchung   über den Einfluss einer 
Einschnürung auf die Stosswellenauebreitung in einem Kanal 
Konstanter Querschnitts," Bericht SHB Nr.   68-17-G3,  Studienkommission 
des EJPD fur Zivilschutz,  Zürich, Switzerland,  1968. 

5. B. P. Bertrand,   "Shock Wave Transmission through a Large Restriction 
in a Constant Area Duct, " BRL MR 1846,  Ballistic Research Labora- 
tories, Aberdeen Proving Ground, MD., June 1967 (AD 656744). 

6. L.  L. Monroe,   "Investigation of the Transmission of a Shock Wave 
through an Orifice, " GALCIT Hypersonic Research Project Memorandum 
No.  46,  Guggenheim Aeronautical Laboratory,  California Institute 
of Technology, Pasadena,  CA, September 1958. 

7. J. M. Ross,  C. M. Nixon, and W. M. McMurtry,   "A Shock Tube Study 
of Attenuation of Air Flow through Chokes, " Suffield Technical 
Note No.  152, Suf field Experimental Station, Ralston Alberta, 
Canada, May 1966. 
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and multiple-plate arrays with the results of simple computation 
models^"**. 

II.  PHYSICS OF THE INTERACTION 

The interaction of a shock wave with a vented plate having a 
single venting slit is sketched in Figure 1, following a discussion 
in reference 4. In Figure la, the portion of the on-coming shock wave 
incident upon the obstruction is reflected by it, while the rest of 
the wave is transmitted into the hole undiminished in strength. 
After some time, the expansion wave shown propagating out from the 
opening serves to pump fluid into the hole and to attenuate the re- 
flected shock wave. 

The influence of viscosity is seen as a build-up of vortices at 
the entrance, Figure la. At a later time, this vortex becomes detached 
and is swept into the restriction, forming a contraction (vena contracta), 
Figures lb-le. Viscous effects are further in evidence as vortices 
are formed, Figure lc, when the transmitted shock wave emerges from 
the restriction, later becoming detached, Figure le, as the shock wave 
expands to occupy the full area of the test section. For this par- 
ticular case [incident shock strength: *>  18 psi (0,124 MPa)], an 
expansion wave propagates upstream against the flow, Figure lc, causing 
an acceleration of the gas in the restriction until sonic flow is 
reached locally.  It is noteworthy that sonic flow also exists at the 
smallest cross-section of the vena contracta,  but a standing shock, 
Figures Id and le, reestablishes subsonic flow. 

Although the geometry of the vent in Figure 1 is not the same as 
for our cases, the concept should be equivalent. Some of the details 
of Figure 1 are supported by shadow photographs of shock waves inter- 
acting with thin plates vented by a single hole7, by schlieren photo- 
graphs of this interaction for various "slit" geometries^, and by 
shadow^»I" and interference^ photographs of a shock wave leaving a tube. 

8. F.  H.  Oertel,  N.   Gerber,  and J.  M.   Bartos,   "The Modified Expansion 
Tube: Theory and Experime?it, " BEL R 1741,  Ballistic Research 
Laboratories, Aberdeen Proving Ground, MD., September 1974* 
AD A001SS1. 

9. E.  M.  Schmidt and D.  D.  Shear,   "The Flow Field About an M-16 Rifle, " 
BRL R 1692, Ballistic Research Laboratories, Aberdeen Proving Ground, 
MD., January 1974  (AD 916646L).    Also "The Formation and Decay of 
Impulsive, Supersonic Jets, " AIAA Paper No.   74-531, AIAA 7th Fluid 
and Plasma Dynamics Conference,  Palo Alto,  CA, June 1974. 

10.    F. H.  Oertel, Jr.,   "Laser Interferometry of Unsteady,  Underexpanded 
Jets," BRL R 1694, Ballistic Research Laboratories, Aberdeen Proving 
Ground, MD., January 1974 (AD 773664). Also Proc.  Int'l.   Cong.  Instr. 
in Aerospace Simulation Facilities,  CA Institute of Technology, 
Pasadena,  CA, September 1973. 
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In the case of a plate with several holes, the picture is con- 
ceptually the same for each hole. However, the interaction of the 
expansion waves at each hole with the reflected shock wave must be 
considered, as well as the interaction of the shock waves emanating 
from each hole.  It is not known how long it takes for these shocks 
to form into a uniform front. 

For more complex geometries, the flow is even more complex. As < 
consequence, care must be taken to ensure that gages are placed far 
enough from the structure for meaningful and consistent pressure 
measurements to be made. For example, even for the simple case in 
Figure 1, a gage placed several tube diameters from the plate would 
read the pressure jump across a quasi-one-dimensional shock wave 
(Figure le).  A gage placed near the plate would not (see Figure Id). 

III. MODEL FORMULATION AND DISCUSSION OF SIMPLE MODELS - 
SINGLE VENTED PLATE 

From the previous description, it is clear that the transmission 
of a pressure wave through a vented plate is highly complex, even for 
the case of the single vent opening in Figure 1. To make such a prob- 
lem tractable, simplifying assumptions must be made. We have chosen 
to make a first order-type approximation, assuming that heat transfer, 
and local effects due to a sharp-edged restriction, such as: three- 
dimensionality, transiency, vorticity, flow separation, and turbulence, 
are of second order. The models shown in Figure 2 have been considered 
in this report. 

In each model, we assume that for the incident and transmitted 
flows, steady, one-dimensional conservation equations for an inviscid, 
nonconducting, ideal diatomic gas are valid.  For the transmitted shock 
wave, the flow is again steady and nearly one-dimensional far from the 
plate. And in each model, the assumptions made regarding the local flow 
through the vented plate reduce the complex flow through a sharp-edge 
restriction to the well-known case of steady, isentropic, quasi-one- 
dimensional flow through a convergent-divergent nozzle*1 — as depicted 
in Figure 2. The nozzle has an area ratio A/A*, where A is the un- 
restricted cross-sectional area of the tube and A* is the sum of the 
cross-sectional areas of the holes. We assume that mass flow through 
the nozzle in each model is maximized; i.e., sonic or choked flow 
occurs at the throat, state [*]. 

Other aspects of the models are slightly different: 

In Model 1, Figure 2a, which has been found to give good agree- 
ment with properties measured in the hypersonic flow downstream of 

11.    G. Rudinger, Nonsteady Duct Flow: Wave-Diagram Analysis* Dover 
Publications, Inc., New York, N.  Y.,  1969, p.  94. 
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the nozzle plate in the BRL expansion tube*% the incident shock wave 
is assumed to be fully reflected from the plate so that u6 = 0. An 

isentropic, unsteady expansion—similar to that for the instantaneous 
opening of a diaphragm—then accelerates the stagnated gas so that it 
enters the convergent nozzle with a velocity u^/. During expansion 

in the nozzle from the state [*] , the gas becomes underexpanded, re- 
quiring recompression.  In this model, recompression is accomplished 
via unsteady, isentropic compression,  the complementary process to 
the isentropic expansion  needed in computing the expansion tube cycle. 
Of course, this process is not physically realistic.  But, neither 
is the steady, isentropic nozzle expansion, which is merely an ex- 
pedient of the one-dimensional simplified model that attempts to pre- 
dict the end result of the actual unsteady free expansion from the 
constriction. 

13 
Model 2 is a composite used in reference 7 of Laporte's  model 

for flow into a constriction and Rudinger's*-1 model for a shock wave 
diffracted by an increase in cross-section. Here, the incident shock 
wave is assumed to be partially reflected so that the gas flows into 
the nozzle with a velocity U5. Conditions in region [5] are such 
that sonic flow will prevail at the nozzle throat. Then, the gas is 
accelerated by an unsteady, constant-area, isentropic expansion, as 
might be the case for a long constriction. After expansion in the 
divergent nozzle, recompression is accomplished by an inward- 
facing shock wave,I* a more physically realistic process than the 
isentropic compression in Model 1. 

Model 3 assumes that the incident flow stagnates behind a fully- 
reflected shock wave, a situation that is closely approximated for 
large values of A/A*. However, since u^ = 0, the continuity equation 
cannot be satisfied for the nozzle flow in this model. Here again, 
an inward-facing shock wave recompresses the steadily-expanded gas. 

Based on our experience, we put forth Model 4 (see the Appendix) 
which uses an inward-facing shock wave in place of the isentropic 
compression used in Model 1, but is otherwise identical to Model 1. 
This inward-facing shock may locate itself in the divergent portion 
of the nozzle5, or move downstream behind the transmitted shock". 

12. J. H.  Spurk, E. J.  Gion, and W. B. Sturek,   "Investigations of 
Flow Properties in an Expansion Tube, " BRL R 1404,  Ballistic 
Research Laboratories, Aberdeen Proving Ground, MD9 June 1968, 
(AD 673109).    Also AIAA Paper No.  68-371, AIAA 3rd Aerodynamic 
Testing Conference, San Francisco,  CA, April 1968. 

13. 0. La Porte,   "On the Interaction of a Shock with a Constriction, u 

Report LA 1740, Los Alamos Scientific Laboratory, Los Alamos, 
NM,  1954. 
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IV.  RESULTS FOR SINGLE VENTED PLATE 

Results of the computations for a single vented plate are shown 
in Figures 3, 4, and 5. 

In Figures 3 and 4, transmitted overpressure (T.O.) is plotted 
against incident overpressure (1.0.) for several area ratios.  Figure 3 
shows a graphical comparison between the computation models; Figure 4 
gives more comprehensive computations for Model 4. 

Each curve for models other than Model 4 is arbitrarily terminated 
at a point which we choose to call the "transition" point. As used 
here, this point, which will be different for each model, represents 
the set of conditions for which Model 4 predicts that the inward- 
facing shock will stand at the exit of the hypothetical nozzle; that 
is, where M = M_ (See Appendix, Figure Al). To the left of this 
point, the ihock stands somewhere in the divergent nozzle; to the 
right, it moves down the tube, following the transmitted shock wave. 
This right-hand segment is very nearly linear and can be closely 
approximated by a straight line out to values of incident overpressure 
(or incident Mach number) for which real gas effects become significant 
and a revised model is sometimes needed6»*2.  This linearity is evident 
for each of the other models as well. 

Notice that the curves for Model 4 (Figures 3 and 4) do not pass 
through the origin as they should. The reason for this is that we 
stipulated sonic flow at the nozzle throat, thereby creating an 
artificial flow into the nozzle even for an acoustic wave (incident 
Mach number of unity, incident overpressure of zero). This assumption 

of the models is seen to have a small effect on the calculations; it is 
especially small at the larger area ratios.  [However, it causes 
T.O./I.O. to become infinite as 1.0. goes to zero, Figures 7a and 7b], 

An estimate of the transmitted overpressure for an A/A* not 
shown on Figure 4 and a given incident overpressure, can be obtained 
by interpolating between the curves.  But, interpolation is not 
strictly linear (see, for example, the curves for A/A* = 15, 20, and 
25). A more useful representation' of the computed data (Model 4) 
for engineering purposes is shown in Figure 5. The abscissa is the 
fraction of blockage by the plate: it is zero when there is no 
restriction (T.O. = I.O.); and, it is unity when the restriction is 
a solid wall (T.O. = 0). Since the spacing between curves becomes 
smaller as 1.0. increases, fewer curves are required than for 
Figure 4; and, at the higher values of I.O., linear interpolation 
between curves leads to small errors. This relatively weak dependence 
of T.O./I.O. on incident overpressure at moderate-to-large values will 
be shown more clearly later. 

Some discrimination of such an estimate is sacrificed at high 
A/A* (1-(A*/A)-KL), but we are primarily interested in A/A*<20 
(1-(A*/A)< 0.95).  Larger values of the area ratio are of little 

11 



practical interest, for, as seen in the insert on Figure 5, much of 
the shock attenuation possible is achieved before reaching high values 
of A/A*.  For example, at A/A* = 20, 70-80% of the possible attenuation 
has been achieved for the range of incident overpressure considered. 

The insert on Figure 5 also suggests that shock strength should 
be taken into account when selecting an area ratio for a desired 
attenuation level. For example, to achieve 70% attenuation of a 
300 psi (2.07 MPa) wave, we need A/A* *\» 20; whereas, for the same 
attenuation of a 60 psi (0.414 MPa) wave, we need only A/A* ^  12.5. 
However, this trend does not appear to be borne out by experiment2»'. 

A. Comparison of Models 

1.  Incident Flow 

There are two conceptually different models for the incident 
flow — Models 1 and 2 (Model 3 is actually a limiting case of Model 2). 
However, when we compared computed values for state [6*] of Model 1 
with those of state [5] of Model 2, we found that they were the same 
within the accuracy of the plotted data (actually < 1% difference). 
Consequently, the two incident flow models are numerically equivalent, 
as alluded to by the results of Spurk et alx*  for the expansion tube. 

We prefer the incident flow model of Model 1.  Using it, we can 
compute flow conditions through to state [*] directly; whereas, an 
iterative solution is necessary to compute the strength of the partially 
reflected shock of Model 2. No substantial savings in machine time was 
realized by using the incident flow model of Model 1 for these calcu- 
lations, because each complete calculation took only ^  0.07 seconds. 
However, substantial savings could be realized if similar calculations 
were done taking chemistry and real gas effects into account. 

The effect of the two numerically-different incident flow models 
can be seen on Figure 3 by comparing Models 3 and 4, since Models 3 
and 4 are identical except for their incident flow models.  For each 
value of A/A*, the assumption of full reflection leads to a higher 
transmitted overpressure.  In fact, at A/A* = 2, Model 3 predicts a 
transmitted overpressure which is larger than the incident overpressure. 
This results, because the full reflection model does not satisfy the 
continuity equation for flow into the nozzle. As a consequence of 
this violation, results are expected to be poor for small A/A* where 
velocity of flow into the nozzles can be significant.  Improvement is 
expected as A/A* becomes larger and entry flow velocity becomes 
negligible.  For example, the difference between Models 3 and 4 at 
100 psi (0.689 MPa) is ^ 15% for A/A* = 4, but decreases to ^ 8.7% 
for A/A* = 8, and ^4.3% for A/A* =15. At even higher values of 
A/A* and higher incident overpressures, the differences between 
models can become negligibly small. 

12 



2. Long Constriction and Several Vent Holes 

At A/A* = 4 the comparison of models on Figure 3 includes 
Model 2 which accounts for the effect of a long constriction. Com- 
paring Models 2 and 4, between which the only difference is the 'long 
constriction effect', we see that the effect is small—a percent 
difference of about 4% at "transition" and about 2% at 140 psi 
(0.965 MPa) incident overpressure. These differences are too small to 
measure with confidence. Experiment' shows that even in the actual 
case, where viscous effects would be included, the effect due to con- 
striction length is small. 

One analytic limitation of the simple models is that they cannot 
differentiate between a plate with a single vent hole having a certain 
area ratio and a plate with several vent holes having the same (effective) 
area ratio. However, experiments^ have shown the differences in trans- 
mitted overpressure to be small. 

3. Recompression Models 

After the gas undergoes steady, isentropic expansion in the 
hypothetical nozzle, it is assumed to be recompressed by an isentropic 
process (Model 1), or by an inward-facing shock (e.g., Model 4). Since 
the incident flow model for Models 1 and 4 is the same, we can see the 
effect of the two recompression models by comparing their results on 
Figure 3. At the low area ratios, such as A/A* = 2, where the entropy 
increase during recompression would be small, there is little difference 
between the models.  But, as A/A* increases and the amount of entropy 
increase during recompression becomes greater, the disparity between 
the results also becomes greater.  For example, at A/A* ■ 2, the 
difference is only ^ 1.5%; at A/A* = 15, it is ^ 52.8%. 

B.  Comparisons with Experiment 

1.  Remarks on Experiments 

The experiments we used for comparison with our computations, 
see Table I, were done in shock tubes for peaked waves^»? and step 
waves4»5 incident upon single vented plates.  (Pressure decays in time 
behind a peaked wave; it is uniform behind a step wave.) All plates, 
except for some used by Kingery , were vented by a single hole.  Vent 
areas and incident overpressures of interest to different experimenters 
seldom overlapped, as shown in Table I.; and, data are scarce. 

13 



TABLE I - SOURCES OF EXPERIMENTS USED FOR SINGLE VENTED PLATE 

SOURCE 

Kingery 

Ross et aV 

Anet 

Bertrand 

MEASURED INCIDENT 
OVERPRESSURE     TUBE DIA 

(psigt) (cm) 

42, 113, 189 10.16 

15, 30, 60, 75   91.44 
90 

12.5, 15.5, 17.5, 48.57 
28.4, 36.5 

27, 85, 110 10.16 

LOCATION AND TYPE 
TYPE INPUT OF MEASURING STATION 

WAVE      AREA RATIOS   (Tube Dia's from Plate) 

Peaked 

Peaked 

Step 

Step 

2, 4, 10, 
12.8 

7 
(Pressure) 

1.37, 2, 4, 
8 

13.2 $ 19.4 
(Shock Velocity) 

8.2, 47.7, 
94.5, 192.7, 
487.5 

2.2 (§ 4.2) 
(Pressure) 

23.3, 50.5, 
96 

12 to ^ 60 
(5 locations) 
(Pressure) 

t 3 Multiply psi times 6.895 X 10    to get pressure in Pascals. 



In the experiments, pressure, or shock velocity (from which pressure 
can be computed), is measured ahead of and behind the vented plate. For 
experiments to be consistent with the computations, effects due to 
causes other than plate attenuation must be eliminated; that is, the 
tube must be calibrated so that the overpressure measured at a location 
behind the plate can be compared with the overpressure that would be 
measured there in the absence of the plate (A/A* = 1). The latter is 
the equivalent incident overpressure. The data of Anet and Bertrand, 
which are not known to have been corrected thusly, will be used as 
published and as "corrected" assuming a 19% shock wave attenuation. 

Because of the complex character of transmitted wave development, 
gage location may strongly influence the magnitude of the measured 
quantity. Measurements should be made far enough from the plate for 
transient effects to have become small.  For example, for large area 
ratios and step waves of intermediate overpressure, Bertrand^ found 
that the transmitted waves were peaked. Overshoot was quite large 
for their highest incident overpressures and area ratio, and persisted 
for *>  60 tube diameters, although it decayed to ^ 10% of its average 
steady value within 30 tube diameters. At their lowest area ratio, 
A/A* = 23.3, the overshoot was much smaller. 

Another example of transient behavior was noted by Ross et dl 
for peaked incident waves which did not steepen to re-form as a trans- 
mitted plane shock front until they had traveled 5-10 tube diameters from 
the plate. Anet^ also observed this non-steepening trend for weak 
step waves, but for A/A* ^ 200. 

For references 2, 5, and 7, even if transient effects have not 
abated, gage locations are such that each transient state should be 
comparable. This may not be true for the data of reference 4, since 
the gages are much closer to the plate. However, judging by the 
discussion above, differences may be small, especially at A/A* ■ 8.2 
where pressure overshoot should be small. 

2.  Comparisons 

Figures 6 and 7 compare computations for Models 1 and 4 with 
measurements for several area ratios. The curves for Model 1 are again 
terminated at the "transition" point for Model 4. 

On Figures 6a-f, Model 4 agrees best with measured transmitted over- 
pressures over the entire range of area ratios and incident overpressures. 
It tends to predict higher values than were measured as incident over- 
pressure increases, except at the higher area ratios,  Overprediction is 
greatest at A/A* *  4. The tendency to simplistically attribute the 
magnitude of this overprediction to dissipative effects should be re- 
sisted, because artificiality of the model also has an effect. 

Figure 7 shows an important scaling effect noted in reference 7 
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and verified here for large-to-moderate incident overpressures by 
numerical computations: that the ratio of transmitted-to-incident 
overpressure is a weak function of incident overpressure. Actually, 
it appears that the measured ratio of overpressures is highest at the 
low incident overpressures and decreases to a nearly constant value 
as incident overpressure increases. 

Here, again, we see that Model 4 predicts the measured values 
better than Model 1 over the full range of area ratios. The difference 
between the models becomes large for A/A* >  10; at A/A* = 10, it is 
23% or more. The trend for measured values to fall below the prediction 
for incident overpressures greater than ^ 60 psi (0.414 MPa) is reversed 
at the two highest area ratios. 

2 
Good agreement exists between the measurements of Kingery and 

Ross et at'  for peaked waves over a fairly wide range of incident over- 
pressures. Also, no substantial difference is evident, for a rather 
narrow band of incident overpressures, between the data for peaked waves 
of Ross (A/A* = 8) and that by Anet for step waves (A/A* = 8.2).  The 
validity of the latter comparison is, however, clouded by a noteable 
difference in measurement location and by an unsubstantiated correction 
used on Anet's incident overpressures. 

V.  RESULTS FOR A SERIES ARRAY OF PLATES 

A. Experiment 

2 
An experiment was performed by Kingery" on a series array of 

1/4 inch (6.35mm) thick vented plates placed 1/4 inch (6.35mm) apart. 
Five holes of 1/2 inch (12.7mm) diameter were drilled in the plates 
on a circle of 1 inch (25.4mm) radius with its center at the center of 
the 4 inch (10.16cm) diameter circular plate — an area ratio for each 
plate of 12.8.  In the experiment, peaked shock waves with nominal 
incident overpressure of 69 psi (0.476 MPa) [54 psi (0.372 MPa) equivalent 
incident overpressure] were incident upon first one plate, then upon 
arrays of two, three, and four plates in series.  Incident pressure, 
pressure at the center of the last plate in the array, and transmitted 
pressure were measured for each array; results are in Table II.  In 
addition, the build-up and decay of pressure between the plates was 
recorded by oscilloscope traces of the pressure gage output. 

B.  Computations and Comparison with Experiment 

First, we applied the simple theory used for single plates to 
several plates in series by taking the wave transmitted by the first 
plate to be the wave incident upon the second plate. This procedure, 
which presupposes that spacing between the plates is large enough 
for a steady state to be reached, was repeated step-wise for each 
subsequent plate in the series.  In this way, the overpressure 
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TABLE II - COMPARISON OF COMPUTATIONS (MODEL 4) AND EXPERIMENT FOR A 
4- PLATE SERIES ARRAY OF VENTED PLATESt 

1.0. 

PLATE 1 

V T.O 

PLATE 2 

V T.O. 

(psi)   (psi)    (psi)    (psi)    (psi) 

PLATE 3 PLATE 4 

P6/     T.O.    p6,      T.O. 

(psi)   (psi)    (psi)    (psi) 

METHOD 1 54 234 14.7 55.1 4.0 

METHOD 2 54 234 15.5 57.9 8.9 

EXPERIMENT 69 310 16.4 188 13.0 
(Raw Data) 

EXPERIMENT 54 234 16.4 141.9 13.0 
(Corr. Data) 

23.6 1.3 17.4 1.2 

36.7 6.3 29.5 5.1 

120 9.6 96 7.3 

90.6 9.6 72.5 7.3 

-^Multiply psi times 6.895 X 10    to get pressure in Pascals. 



transmitted through each plate of the array was determined from a 
working graph of Model 4, such as Figure 4,for A/A* = 12.8. Maximum 
pressure on each plate was estimated by computing p. for the wave 

incident upon each plate (See Fig. 2a and Appendix A. Actually, we 
should use p ', but for this area ratio, M/ m  0, so p' * p,). 

Results of this method are compared with experiment in Table II. 

A second method, which should be more applicable to this 
experiment, is suggested by the hypothesis of Baker et al^  that a 
series of vented plates, each with a vent area ratio a. (i = 1, 2, —, n) 
= (A*/A)., behaves like a single plate with an effective area ratio 

given by 
J_  = I_ + 1_ «. ... + JL • 
ae£f      al      "2 an 

For this method, the appropriate effective area ratios for the single, 
two-, three-, and four-plate arrays are 12.8, 25.6, 38.4, and 51.2, 
respectively. Transmitted overpressure read for each array from 
Figure 5 are shown in Table II; p 'was again computed as explained 

above, using the transmitted wave strength for subsequent plates. 

Examination of Table II shows that agreement between experiment 
and computations is reasonably good for the single plate.  For subse- 
quent plates, agreement is poor for both methods--ample testimony that 
the computation model as used for the case of the single vented plate 
is inadequate for this series array of plates.  [Computations would 
probably better agree with measurements for these closely-spaced plates 
if the assumption of choked flow were removed.  It appears from the 
discussion in the next section that mass flow through the array is not 
a maximum, as the choked flow assumption stipulates.  It seems reason- 
able that if the flow is not assumed to be choked, a lower transmitted 
overpressure would be computed.] 

Method 1 results in much lower values than Method 2.  But, Method 1 
does not yield lower values than Method 2 for all  A/A*.  For example, 
it can easily be shown that for Model 4, two plates, each with A/A* = 2, 
transmit a higher pressure than a single plate with an effective A/A* = 4. 
Cross-over occurs at A/A* < ^  4, since two plates, each with A/A* = 4, 
transmit nearly the same pressure as a single plate with A/A* = 8. 
This observation is, of course, also true for Model 1 for which cross- 
over occurs at a slightly smaller value of A/A*. 

14.    W.  E.  Bakers P. S.  Westine, P. A.  Cox, and E.  D. Esparza, 
"Analysis and Preliminary Design of a Suppressive Structure for 
a Melt Loading Operation," SWBI Technical Report No.   1, Southwest 
Research Institute, San Antonio,  TX, March 1974. 
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Transmitted overpressure computed by Method 2 for the second 
through the fourth plates ranges from 30-35% lower than the measure- 
ments, but the pressure on each plate (p/)is about a factor of three 

lower than the measurements (raw data). Even if we use the meaßured 
values of transmitted overpressure -- for which (from Figure 5) the 
arrays attenuate like single plates with area ratios of about 11.4, 
15.6, 23.3, and 33.3, respectively — the pressures computed from 
Equation (4) are still too low by factors of 2.5-3 (corrected data). 
[We feel justified in using the equations without "viscous" correction 
for the 4-plate case, because loss terms did not appear to be a factor 
in the comparison of computations with experiment for one plate below 
^ 60 psi (0.414 MPa) (see Figure 6).] 

C.  Other Observations 

2 
Examination of the magnitude and shape of oscilloscope traces 

of incident and transmitted wave pressures, and of pressures between 
the three arrays of closely-spaced plates, shows that between the 
plates, expansion of the transmitted wave is incomplete (its magnitude 
lies between the computed values for p* and vJ)>  and tnat it never 

regains its shock-like shape until it leaves the last plate. 

In essence, fluid appears to "leak" through the arrays in a way 
shown on Figure 8, which is a representation from the oscilloscope 
traces of the pressure on each plate at a particular instant in time. 
The time t is the time at which the pressure on the first plate is 

a maximum; t , t-, and t. are the approximate times (after t ) at 

which the pressures on plates 2, 3, and 4, respectively, reach a 
maximum. 

At t. we see that a pressure wave has been transmitted through 

the 4-plate array very quickly — in about one-tenth the time required 
for the pressure on plate 4 to peak. During this transit time, the 
pressure on the first plate has decreased only ^ 7% from its peak 
value. This observation suggests that computations such as ours, 
which are, strictly speaking, applicable only to step waves, should 
also be applicable to transmission of a peaked wave with the same 
maximum incident pressure. The agreement, for single plates, between 
the data measured for a peaked wave (A/A* = 8) and a step wave 
(A/A* = 8.2) on Figure 6c seems to bear out this point, although data 
are insufficient for firm conclusions to be made. 

In principle, we should also be able to compute the decay history 
of the transmitted pressures between and behind the plates by approxi- 
mating the incident wave as a series of step waves of decreasing 
amplitude, because the transmitted wave is directly coupled to the 
incident wave to experimental accuracy. This has been shown by 
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scaling down the magnitude of incident waves from reference 7 and 
incident reflected waves from reference 2 using the ratio of peak 
transmitted to peak incident wave pressures, and then comparing the 
resulting  "transmitted" wave shapes with the measured transmitted 
wave shape. Of course, we recognize that such an approximation is an 
over-simplication of the actual time-dependent, three-dimensional flow 
situation, but it may be useful. The main drawbacks of this 
simplistic approach are that the models simply do not predict the 
magnitude  of the pressures accurately enough, and that the time when 
maximum pressure is attained cannot be approximated accurately (for 
example, from the known distance and an average of the computed'veloci- 
ties. 

VI.  CONCLUDING REMARKS 

Several steady, one-dimensional models of the interaction of a 
shock wave with vented plates have been compared with each other and 
with experiment. These models have one basic tenet in common — 
simplicity. One model, Model 4, was formulated to combine the preferred 
features of the models: 1) Its entry model gave the same entry condi- 
tions as the partial reflection: model, without requiring an iterative 
solution -- a potential time-saver. Allowing for partial reflection 
was shown to have a noticeable influence on transmitted overpressure 
at low-to-raoderate A/A*; and 2) Computations were greatly simplified 
by replacing the actual transient, three dimensional expansion of the 
flow from the vent hole(s) by a hypothetical steady expansion in a quasi- 
one-dimensional divergent nozzle.  The credibility of Model 4 was 
enhanced by the fact that its expansion model assumed a transmitted 
shock-structure consistent with the steady-state situation observed  ft 

when a free jet expands from a tubular restriction into a larger tube . 
That is, the transmitted shock wave was followed (for some conditions, 
see Appendix) by an inward-facing (recompression) shock wave. 

Again, it should be stressed that the location of the measurement 
point downstream of the vented plate can be very important when measure- 
ments are being compared with computations.  For example, for the 4- 
plate series array, the pressure was measured on the back of plate 4 
to be 15.4 psi (0.106 MPa).  If that pressure were used in conjunction 

with Figure 5, the array would appear to attenuate like a single plate 
with an effective area ratio, A/A* = 13.3.  This value is only slightly 
larger than the area ratio for each individual plate and quite different 
from the effective value of ^ 37 computed for the pressure measured 
farther downstream.  In making our comparisons, we tried to use con- 
sistent data (see earlier discussion of Table I). 

Specific conclusions based on this work are: 

For a single vented plate: 
1) The number of computations is greatly reduced by the 
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fact that, for a given A/A*, transmitted overpressure versus incident 
overpressure can be represented by a straight line (for a certain 
region -- see earlier discussion of Figure 4), and by the fact that 
the ratio of transmitted-to-incident overpressure is nearly constant 
over a wide range of interest (Figures 7a and 7b), The latter fact 
also reduces the number of experiments needed. 2) Model 4 agrees 
adequately with shock tube measurements of transmitted overpressure for 
fairly low incident overpressures (See Figures 6a-6f). For incident over- 
pressures above "transition" from the hypothetical nozzle, a correction 
term is needed.  3) The models are applicable to step waves, but can be 
applied to peaked waves if the shape of the incident wave is known. 
4) More — and more careful — data are needed to resolve the differences 
between computed and measured ratios of transmitted-to-incident over- 
pressures at low incident overpressures (See Figures 7a and 7b), although 
our current interest in this region is small. 

For a series array of vented plates: 
1)  These simple models cannot be applied with profit to the 

transmission of a shock wave by closely-spaced plates, since transient 
effects are obviously important. Neither of the two methods we tried 
(See Table II) predicted the peak pressure between plates adequately. 
The method using equivalent area ratio predicted the transmitted 
pressure best, but its predictions were still below the measured values, 
in contrast to expectations.  2) The experiment presently available is 
not a valid test for the models. Plates should have wider separation 
so that steady-state conditions will be approached. However, for most 
practical vented structures, the elements of the structure will likely 
be closely-spaced.  [Unfortunately, data available in reference 3 
for more widely-spaced plates did not include pressure measurements 
between the plates.]  3) For closely-spaced plates, experiment or a 
three-dimensional transient ("filling") code is required.  Some 
simplification of the codes may be possible by taking advantage of 
the coupling between incident and transmitted wave decay mentioned 
earlier.  Computations by Proctor15 using their hydro-code show the 
expected trends for filling between plates of a 4-plate array for 
peaked and step incident waves. 

VII.  RECOMMENDATIONS 

It is recommended that: 

1)  Figure 5 be used to estimate the transmitted overpressure 
for given incident overpressure and A/A*.  2) An experiment be done 
for widely-spaced plates (same plates, same incident wave strength) 

15.    Private communication from Mr.  J.  F.  Proctor, Naval Surface 
Weapons Center,  White Oak Laboratory, Dahlgren,  VA,  October 1975. 
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to see if our model is appropriate for that case. And, an experiment 
be done for the 4-plate array at a higher incident overpressure, where 
losses appear to be greater. 3) The feasibility of relaxing the choked 
flow assumption be examined; and, if it is feasible, calculations be 
done for a series array of plates and compared with experiment. 4) An 
experiment be done with step waves incident upon single and multiple- 
plate arrays to quantify the effect of a step wave as opposed to a 
peaked wave on pressure between the plates. 5) The feasibility of 
simplifying applicable hydro-codes by assuming direct coupling between 
the decay of the transmitted wave and the known decay of the incident 
wave be examined; a considerable saving of computation time may be 
realizable. 
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ADDENDUM 

Analysis of some of the data referred to in reference 2 was com- 
pleted after completion of this report. An empirical relationship 
was found assuming that the ratio of transmitted-to-incident over- 
pressure is a function of area ratio alone. That relationship*6, 

T.O./I.O. = 1.164 (A/A*)"0,5135, is shown plotted on Figure 5 (insert). 
It is a least squares fit to data for single plates with vent area 
ratios from 2 to ^ 20. 

2 
It is also noteworthy that Kingery found good agreement between 

transmitted overpressures (T.O.) measured behind two-, three-, and 
four-plate arrays and transmitted overpressures computed for corresponding 
incident overpressures (1.0.) using the above equation. The area ratio 
for each array was computed using the equation on page 18 of this report. 

16.    C.  Kingery and G.  Coulter,   "Shochoave Attenuation by Single 
Perforated Plates, " BEL Memorandum Report (to be published), 
Ballistic Research Laboratories, Aberdeen Proving Ground, MD. 
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e) 

Figure 1. Stages During the Transmission of a Shock Wave Through 
a Single Slit in a Plate after Reference 4. 
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Figure 5. Ratio of Transmitted-to-Incident Overpressure (T.O./I.O.) 
Versus Fraction of Blockage by the Plate for Model 4. 
Insert: T.O./I.O. Versus Area Ratio. The free parameter 
is incident overpressure in millions of Pascals. 
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APPENDIX:  GOVERNING EQUATIONS FOR MODEL 4 

Approach 

The shock wave approaching the vented structure is governed by 
the jump relations.  For a given Mach number, Mc =  Uc /a. (see Fig. 2), 

SI   SI l 

the equations in a shock-fixed coordinate system are: 

ai" 

yl.-1'2 

f^iffx*^ 
4Vi 
Y-l  I 

(3) 

Entry 

As in reference 8, we assume that the shock wave is fully- 
reflected from the plate, and that flow into the hypothetical nozzle 
is established by an unsteady expansion to the state[6'] (see Fig. 2a) 
Again in a shock-fixed coordinate system, the governing equations 
across the reflected shock are: 

p6   <£r+ 2) Yi -:       p6 Y    = -2. =     »   x i  • _2. = V  .  V C41 YR - P2 ni •     Pl   
YR Yi 

I Y-l 

s   [YR (yR+ffiV72   !i  !i  f2 
a2  l^YR+l   J  '   al  a2  al 

(5) 

For the unsteady, isentropic expansion, we have from the Riemann condition, 

2 Y 
u + —=- a = const, and the isentropic relation, p = const • p = const 

. a2Y/Y-l: 
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V   Vai 
ai mp. M6, ' 

u,. a 

u, = 0 (6) 

6'     u 6' 

2 V 
V   V   £6    (V /ai 1 Y"x   . £6 
>'l  " P6      l1!  " la6/al   J ''I 

where we compute Mfi/   <  1  from the equation for steady nozzle flow: 

(8) 

(9) M6, M? "A*   M* 

Here A/A* is the full area ratio, and, since flow through the nozzle 
is assumed to be a maximum for the approach condition, M* = u*/a* = 1, 
The supersonic value, M_ > 1, is also computed for later use. 

Up to this point, the calculation has been straightforward — 
no iterations -- for a given incident Mach number (or incident over- 
pressure (p^/Pi - 1) * P-i) znd  a given area ratio, A/A*. 

Expansion 

We replace the actual unsteady expansion process by a steady, quasi- 
one-dimensional expansion in a hypothetical divergent nozzle. Two 
cases must be considered for a given A/A*:  1) recompression of the 
expanded gases is required within the divergent nozzle, and 2) recom- 
pression is required after expansion to the full tube area has taken 
place. 

When expansion to the full tube area takes place, we have the 
situation depicted in Figure 2d, M_ equals the value computed from 

Equation (9), and we proceed with the following equations for steady 
isentropic expansion: 
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1/2 

z-nm 
u      a 
TL=M7'/ (11) 
al   7 al 

Pi " ?6 ' Pi " 1 V^J   ' Pi 
(12) 

Across the recompression or inward-facing shock, which moves to the 
right bei 

compute: 

right behind the transmitted shock wave with a Mach number M , we c 

p7  Y+l  c   Y+l'    px  p7  Vl 
K     J 

and 

Ü5. = M7- JL (M - i-) J   — = — • —        (14) 
a-   7 Y+l  c  M  '   a   a-  a. 

Across the transmitted shock wave: 

!i   2 M2  W 
px   Y+l  ST Y+l 

and 

£ ■ A <\ - £ 
The solution is obtained by Newton iteration procedure to find an 

M for which the equations Po/p, = Pq/Pi anc^ uo/ai = uq/ai are 

matched across the contact front.  Or, the equations can be solved 
graphically. 
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Solutions are valid for a given A/A* so long as M < M . 

Solutions can also be found for M > M?, but this requires that u_ 

be negative. This unrealistic result occurs for low incident over- 
pressures. 

The limiting value of incident overpressure which satisfies 
the set of equations above is found for a given A/A* when M = M7, 

where M is the value computed from Equation (9). That is, the limit 
is found when the inward-facing shock stands at the nozzle exit.  For 
incident overpressures less than this limiting value (for a given A/A*) 
the inward-facing shock stands in the divergent nozzle as shown in 
Figure Al. 

[2] Us, [i] 

X 

uSf 

INCIDENT SHOCK 
-REFLECTED SHOCK r-ruLLT-KtrLt^itu : 

[2] [«1 
® 

WfäTTTTrr, 

TRANSMITTED 
SHOCK 

[»] 

^-UNSTEADY EXPANSION 

CONTACT   FRONT; 

STATIONARY RECOMPRESSION SHOCK- 

Figure Al. Sketch of Flow Model: Model 4 with Recompresslon Shock 
Standing in the Divergent Nozzle. 
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For this case, we seek a solution for which M_/< M_ and A-//A* ' 

A-'VA < A/A using the following equations: 

For steady, isentropic expansion to A-,/A* in the divergent nozzle: 

and 

Y*l 

V   CM7'  * y^F  M*       < A_ 
A7" "    M , ' Y»1  " A* 

2 f  2 2T7T) 
Y-1 

r» 2   2 ^1/2 

u7' 
al 

M7'   *lf- 

P7/    P7/ 

PT'PI 
p6 

Pi" 

fa7'/all 
lVal    J 

2Y 
Y-1 

• P6 

Pi 

Across the stationary shock, M = H-,  and: 

(9)' 

(10)' 

(11)' 

(12)' 

P7»»        ?v          2 
C        p?/         Y+l     C 
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"  Y+l 

P71.                  P7/ 

Pi               C            ?! 
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v ta. Y ♦ 1 j' VY-1     c            -* 

a7„ 
al 

a7»    .    a7' 
a7,          aj 
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V                      2 — = M-,   - -V (M 
a              7'        Y+1       c 

• 

-*3 c 
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M. 
"7i./a7/ 

7" • a7„/a7/ 

Vox  steady, isentropic nozzle expansion to state [8]: 

(16)' 

CM.2**) 2^ 8 

and 

M 8 A* 
A^ 
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K ♦ ^i^' 
H 7" 
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2Y 

Pg  Pg  ^    P7n  fa8/aiy   p7„ 

P2 
= P7«  PX 

= \v7^ij  ' Pi 

(19) 

(20)' 

Equations (15) and (16) are again used to compute the conditions behind 
the transmitted shock wave. Again, we seek a value of M  (= M ,) for 

which the equations Po/P-. = Pq/Pi am* uß/ai = uc/ai are matcne<^ across 

the contact front.  Newton iteration did not work well for this latter 
set of equations, so the "half-interval method" was used. 
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LIST OF SYMBOLS 

A cross-sectional area of the tube 

a local gas sound velocity 

A* sum of the cross-sectional areas of the holes in the plate 

M local Mach number of gas 

M* = u*/a* 

= 1 Mach number of gas at sonic conditions 

M EU /a Mach number of shock wave 
s  s 

p pressure 

U velocity of shock wave 

u local gas velocity 

Y pressure ratio across shock wave 

Y ratio of specific heats, adiabatic exponent 

p density 

Subscripts 

1,2,  regions indicated on Figure 2 

c pertains to inward-facing shock 

I pertains to incident shock wave 

R pertains to reflected shock wave 

T pertains to transmitted shock wave 
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